FANDOM


Bir ya da daha fazla değişken arasındaki ilişki, bu değişkenlerin değişim oranlarının bir fonksiyonu olarak düşünülebilir. Değişim oranları, zaman bağımsız değişken olmak üzere sürekli veya kesikli olarak ifade edilebilir. Değişkenlerin zamana bağlı olduğu düşünülürse; değişkenler, onların değişim oranları ve fonksiyonları ifade eden denklemler elde edilir. Bu denklemlere türevsel denklemler denir. Diğer bir adı da diferansiyel denklem olarak geçer.

Diferansiyeli belki de doğrudan "değişim" olarak çevirmek gerekir. Eğer bir fonksiyon (yada bir olay) bir değişkene göre değişim göstermiyorsa türev sıfırdır.

Diyelim kendi boyunuzun yıllar içerisindeki değerlerini grafiklediniz. Bu durumda ömrünüzün ilk yıllarında bir yukseliş olurken bir dönemden sonra değişim olmayacak sonunda da ters yönde bir değişim (nisbi kısalma) olacaktır. Bu eğrinin türevi bize boyumunuz zamana bağlı değişimlerini verecektir. İkinci türeve baktığınızda ise değişimlerin değişimini görürsünüz. Yani eğer sabit bir hızda boyunuz artıyorsa bu durumda değişim (1. türev) bir değer üretirken, değişimlerin değişimi (2. türev) sıfır olacaktır.

Doğal olayları da modellerken olayı yaratan fonksiyonu bulabilmek için yaptığımız gözlemlerin değişimler olduğu fikrinden hareket ediyoruz. Hızdaki değişimin ivme olması gibi. Bir tel üzerinde uzamanın en küçük (limit anlamında) parçasının değişimin saptayıp oradan bir keman teli üzerinde oluşan titreşimlerin denklemine erişmeye çalışıyoruz (ve başarabiliyoruz da).

Tanrı dunyayı değişimler üzerine yaratmış desek haksız sayılmayız. Yani ne kadar değişim o kadar hayat. Değişmeyen benim bildiğim hiçbir şey yok. Yani her şeyin bir diferansiyel denklemi, bir değişim süreci, formulü var. Ama değişimden hareketle bulunan fonksiyonların her biri birbirinden farklı.


Community content is available under CC-BY-SA unless otherwise noted.